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Background: Quantization

* Quantization: real2int

* Quantization = Normalization + Mapping
* Normalization: a real number => a number in unit interval
* Mapping: a number 1n unit interval => a int number

e ... only keep quantized tensor ...
* Dequantization: reverse the quantization, int2real



Normalization

Normalization The normalization operator N scales each elements of x into the unit interval, i.e.
[0, 1]. Normalization can have different granularity, such as per-tensor, per-token (row) [33, 51],
per-channel (column) [4], group-wise [33, 51] and block-wise [14]. The per-tensor and block-wise
normalization operators are given by

n; = N per-tensor(l"j) - J:J/ llélflg(p |51-7i| .

n; := Nplock-wise(Zj) = zj/ max {|z;| : 1+ B |j/B| <i < B(|j/B] + 1)},
respectively, where the involved scaling factors are called guantization scale, which are persistently

stored together with quantized tensor until dequantization. The granularity of normalization presents
a trade-off of quantization error and memory overhead. Normalization method with low quantization



Per-token and per-channel norm.
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Mapping/data type: from linear to nonlinear

Mapping A mapping [14] converts normalized quantities to low-bitwidth integers. Formally, the
mapping operator M = M j is equipped with a bitwidth b and a predefined increasing mapping,
named quantization mapping T : [0,2° — 1] N Z — [0, 1]. Then M is defined as

q;j := M(n;) = arg min |n; — T(7)|.

0<i<2b

The design of T is critical as it could effectively mitigate quantization error by capturing the
distribution information of n. There are two kinds mappings that are of specific interest to optimizer
- Linear (Integer) quantization mapping: T(1) =1/ (2"b - 1)

- Traditional def.: ¢ = round(n x (2°—1))
- For signed setting:

- more flexible in mapping design

- 1ncompatible with low-bit computation



Quantization Setting

* W8AS
* Weight-only or W4A16

* Difference:
* choice of mapping
e computation mechanism



Philosophy of Quantization

Informally, consider a tensor x to be quantized:
 Large entries has lower relative quantization error

* When there are some outlier (extremely large) entries, small entries
will only use low effective quantization bits



LLM.int8() (W8AS8)

* Empirical observation:

 Activations have large magnitude features (outliers) and these outliers occur
systematically for almost all sequence/token dimensions s but are limited to
specific feature/hidden/channel dimensions h.

* Criteria: the magnitude of the feature is at least 6.0
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LLM.int8()  ANectti QU o e
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* Technique:
* Per-token norm. for X and per-channel norm. for W

* Integer data type

* Mixed-precision decomposition:
* Use a threshold a to determine the outlier channel dimension.
* The number of outlier feature dimensions is not larger than 7.
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Model size (OPT-) 6.7B  13B 30B 66B 175B

SmoothQuant (VV8A8) FP16 64.9% 65.6% 67.9% 69.5% 71.6%

INTS8 per-tensor  39.9% 33.0% 32.8% 33.1% 32.3%
INTS per-token 42.5% 33.0% 33.1% 32.9% 31.7%

* claim: Outliers persist in fixed channels
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Figure 3: Magnitude of the input activations and weights of a linear layer in OPT-13B before and after SmoothQuant.
Observations: (1) there are a few channels in the original activation map whose magnitudes are very large (greater than 70);
(2) the variance in one activation channel is small; (3) the original weight distribution is flat and uniform. SmoothQuant

migrates the outlier channels from activation to weight. In the end, the outliers in the activation are greatly smoothed while
the weight is still pretty smooth and flat.



e Limitation of W8AS
Y = diag(AL0) . (XTI . WINI8) . diag(A'®) (2)
* SmoothQuant

Y = (Xdiag(s)™!) - (diag(s) W) = XW

* Sets; = max(|X;j|) to completely’” migrate the quantization difficulty from
activations to weights. In practice, use

s; = max(|X;])*/ max(|W;[)' =



The role of «
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Figure 9: A suitable migration strength o (sweet spot)
makes both activations and weights easy to quantize. If
the « is too large, weights will be hard to quantize; if too
small, activations will be hard to quantize.

Memorize this figure.
Compare with AWQ.



Efficient Implementation (?)
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* Reported GPU usage: 1 GPU for OPT-66B, 4 GPUs for OPT-175B



AWQ: Activation-aware Weight Quantization (WW4A16)

* claim: Weights of LLMs are not equally important: there 1s a small
fraction of salient weights that are much more important for LLMs
performance compared to others.

b

* salient= ? (weight magnitude or activation magnitude or ...)

bad hardware efficiency >
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(a) RTN quantization (PPL 43.2) (b) Keep 1% salient weights in FP16 (PPL 13.0) (c) Scale the weights before quantization (PPL 13.0)



Salient = weight magnitude or activation magnitude ?

PPL | EP16 RTN FP16% (based on act.) FP16% (based on W) FP16% (random)
(w3-g128) 0.1% 1% 3% 0.1% 1% 3% 0.1% 1% 3%

OPT-1.3B 16.41 206.5 28.00 18.51 18.30 187.1 173.1 1655 211.2 2014 88.44
OPT-6.7B  12.29 43.16 13.14 13.02 1297 43.51 3859 39.78 4273 37.83 46.49
OPT-13B  11.50 45.37 12.14 12.04 12.00 46.21 48.07 5438 4595 44.47 40.01

Table 1. Keeping a small fraction of weights (0.1%-1%) in FP16 significantly improves the performance of the
quantized models over round-to-nearest (RTN). It is only effective when we select the important weights in FP16
by looking at activation distribution instead of weight distribution. We highlight results with a decent perplexity
in green. We used INT3 quantization with a group size of 128 and measured the WikiText perplexity ({).

Activation matters. How can we improve quantization by leveraging
this observation? --- scaling. why?



Replace keeping fp16 with scaled quantization
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(b) Keep 1% salient weights in FP16 (PPL 13.0) (c) Scale the weights before quantization (PPL 13.0)

Searching to scale. We automatically search for an optimal (per input channel) scaling factor that
minimizes the output difference after quantization for a certain layer. Formally, we want to optimize

the following objective:

s* = argmin L(s),

S

L(s) = QW -s)(s™" - X) — WX]|

(D)



Determine scale

* Sy = meanc,|X|

* computed via calibration set (from pretrained dataset)
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e sy = meang;|W| (1.normed. 2. contribute a little. 3. ?)

s = f(sx,sw) = sx“ -SW_B, a*, f* = argmin L(sx* - SW_B)

* last trick: shrinking ratio / clip

a,B

Q(W)mT3

scale beforw w

N EEnREN

t average mag.

X *

(c) Scale the weights before quantization (PPL 13.0)

crucial. Furthermore, we find adjusting the clipping range by searching a shrinking ratio (denoted
as “+clip”) can sometimes further improve the quantized performance. Adjusting the clipping range
leads to a nudged scaling factor [15] which may help better protect the salient weights. We combine

both scaling and clipping to form AWO.

grid search



Evaluation results

LLaMA Faimily MMLU (5-shot) average 1 Common Sense QA (0-shot) average 1

7B 13B 30B 65B 7B 13B 30B 65B

FP16 - 3841% 4521% 56.84% 60.50% 67.30% 70.65% 72.97% 74.49%

INT3 RTN 33.43% 39.20% 50.58% 57.77% 64.55% 68.63% 72.07% 72.58%

2128 GPTQ 30.53% 40.90% 52.32% 58.04% 59.66% 68.71% 70.77% 73.03%

AWQ 3543% 41.84% 53.22% 58.83% 65.53% 69.22% 7210% 73.39%
COCO (CIDEr 1) 0-shot  4-shot 8-shot 16-shot 32-shot A(32-shot)

FP16 - 63.73 72.18 76.95 79.74 81.70 -

INT4 RTN 60.24 68.07 72.46 74.09 77.13 -4.57
2128 GPTQ 59.72 67.68 12.53 74.98 74.98 -6.72
AWQ 62.57 71.02 74.75 78.23 80.53 -1.17
INT3 RTN 46.07 55.13 60.46 63.21 64.79 -16.91
2128 GPTQ 29.84 50.77 56.55 60.54 64.77 -16.93
AWQ 56.33 64.73 68.79 72.86 74.47 -7.23

Table 6. Quantization results of a visual language model OpenFlamingo-9B [2] on COCO Captioning datasets.
AWQ outperforms existing methods under zero-shot and various few-shot settings, demonstrating the generability
to different modalities and in-context learning workloads. AWQ reduces the quantization degradation (32-shot)
from 4.57 to 1.17 under INT4-g128, providing 4 X model size reduction with negligible performance loss.



Comparison with SmoothQuant

* 1. the intuition and mechanism are different. the setting 1s different.
* SmoothQuant: balance the smoothness between weight and activation
* AWQ: scale salient weights with activation information

e 2. the final formulation are similar. oes i S WEkiA ol iGhS e AT
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Robust to the calibration set distributions

Eval GPTQ Ours
Calib PubMed Enron PubMed Enron

PubMed 3248 50.41+4.89 ,32.56 45.071+0.50
Enron +2.33 34.81 45.52° +0.6033.16 44.57>




QLoRA

* Quantization setting: 4-bit weight-only quantization for pretrained
weights and 16/32-bit lora weights

YBF16 — XBFl6d0ubleDequant(C§P32, Cg_bit, WNF4) < XBF16L11?:F16LI23F16,

* Quantization method: block-wise norm. + NormalFloat type
* NormalFloat: quantile on normal distribution
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Further memory efficiency

* Double quantization

e If 32-bit scales and a blocksize of 64 are used for W, quantization scales add
32/64 = 0.5 bits per parameter on average. Double Quantization means
quantize the quantization scales, with blocksize of 256 and FP8 data type.

* overhead: 32/64 = 0.5 bits => 8/64 + 32/(64 - 256) = 0.127 bits

* Paged optimizer: surviving mem spikes
 similar to optimizer offloading, but more adaptive

=> With QLoRA, one can finetune Guanaco 33B/65B models on a
single 24/48GB GPU taking only 12/24h for a finetuning run.



Evaluation

Table 3: Experiments comparing 16-bit BrainFloat (BF16), 8-bit Integer (Int8), 4-bit Float (FP4), and 4- 1. Match baseline
bit NormalFloat (NF4) on GLUE and Super-Naturallnstructions. QLORA replicates 16-bit LoRA and full- ’
finetuning. 2. DQ not degrade
Dataset GLUE (Acc.) Super-Naturallnstructions (RougeL.) 3. NF better than FP
Model RoBERTa-large T5-80M T5-250M T5-780M T5-3B  T5-11B
BF16 88.6 40.1 42.1 48.0 54.3 62.0
BF16 replication 88.6 40.0 42.2 47.3 54.9 -
LoRA BF16 88.8 40.5 42.6 47.1 55.4 60.7
QLORA Int8 88.8 40.4 42.9 454 56.5 60.7
QLORA FP4 88.6 40.3 424 47.5 55.6 60.9
QLORA NF4 + DQ - 404 42.7 47.7 39.3 60.9

Table 4: Mean 5-shot MMLU test accuracy for LLaMA 7-65B models finetuned with adapters on Alpaca and
FLAN v2 for different data types. Overall, NF4 with double quantization (DQ) matches BFloat16 performance,
while FP4 is consistently one percentage point behind both.

Mean 5-shot MMLU Accuracy

LLaMA Size 7B 13B 33B 65B Mean
Dataset Alpaca FLANvV2 Alpaca FLANvV2 Alpaca FLANv2 Alpaca FLAN v2
BFloat16 38.4 45.6 47.2 50.6 .1 60.5 61.8 62.5 53.0
Float4 372 44.0 47.3 50.0 35.9 58.5 61.3 63.3 92:2

NFloat4 + DQ  39.0 44.5 47.5 50.7 915 59.2 61.8 63.9 G |
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