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GD on Quadratic obiective

Consider L(8) = 2 7 | A;67, where Ay > Ay > --- > Ay > 0.
Gradient descent with fixed step size 1 gives

0t+1 = Qt — 7]VL(9t)
Ori1,i = (1 — ;)b

» To guarantee convergence to the global minima, we must have
n <2/, ie A\ <2/n.

» Each dimension decreases independently

> If A2 < 2/n < A1, all dimension except the first dimension
converges



Implicit bias in GD/SGD (in deep learning)

When multiple minima exists, the algorithm plays an active role
for selecting the solution

* NTK

* Flathess/Sharpness
* EOS
« Stability
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EoS phenomena

* Progressive Sharpening

1. For any reasonable step size n the sharpness of iterates
increases throughout training until it reaches 2 /7

« Edge of Stability

2. For the rest of training, the sharpness hovers right at, or just
above, the value 2/n

3. The train loss behaves non-monotonically, yet consistently
decreases over long timescales.



(@) Mean Squared Error (MSE) loss (b) Cross entropy loss
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Figure 3: So long as the sharpness is less than 2/7, it tends to continually increase during
gradient descent. We train a network to completion (99% accuracy) using gradient descent with a
very small step size. We consider both MSE loss (left) and cross-entropy loss (right).
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Figure 4: Once the sharpness crosses 2 /7, gradient descent becomes destabilized. We run gradi-
ent descent at n = 0.01. (a) The sharpness eventually reaches 2/7. (b) Once the sharpness crosses
2/n, the iterates start to oscillate along q; with ever-increasing magnitude. (c) Somehow, GD does
not diverge entirely; instead, the train loss continues to decrease, albeit non-monotonically.



train loss sharpness sharpness (by time)
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Figure 5: After the sharpness reaches 2/7, gradient descent enters the Edge of Stability. A
network is trained with gradient descent at a range of step sizes (see legend), using both MSE loss
(top row) and cross-entropy (bottom row). Left: the train loss curves, with a vertical dotted line at
the iteration where the sharpness first crosses 2/7. Center: the sharpness, with a horizontal dashed
line at the value 2/7). Right: sharpness plotted by time (= iteration X 7)) rather than iteration.



Distance from gradient flow

Setting:

2-layer FC network
MSE loss

Up: tanh activation
Bottom: RelLU activation
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Stepsize drop make sharpening continue
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Figure 7: After a learning rate drop, progressive sharp-
ening resumes. We start training at 7 = 2/200 (orange)
and then after 6000 iterations (dotted vertical black line),
we cut the step size to 7 = 2/300 (green). Observe that as
soon as the step size is cut, the sharpness starts to rise.
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sharpness
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Figure 90: We train a VGG with BN to completion using gradient descent at different step sizes sharpness”
(see legend in the top right pane). Top left: we plot the train loss, with a vertical dotted line
marking the iteration where the sharpness first crosses 2/ 7. Top center: we plot the evolution of



Model and Data complexity
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Figure 18: The effect of dataset size. We use gradient flow to train a network on varying-sized
subsets of CIFAR-10. Observe that progressive sharpening occurs to a greater degree as the dataset
size increases.



Width and Depth: for PS

* Sharpness increases as the network become narrower and deeper
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Figure 17: The effect of depth: mean squared error. We use gradient flow to train networks of var-
ious depths, ranging from 1 hidden layer to 4 hidden layers, using MSE loss. We train each network
from five different random initializations (different colors). Observe that progressive sharpening
occurs to a greater degree for deeper networks.



Width and Depth: for PS

* Sharpness increases as the network become narrower and deeper
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Figure 14: Standard parameterization: evolution of the sharpness. We use gradient flow to train
standard-parameterized networks, and we track the evolution of the sharpness during training. For
each width, we train from five different random initializations (different colors). Observe that the
sharpness rises more when training narrow networks than when training wide networks.



Width and Depth: for EoS

 Other work give a “simple” example that objective converges to
some mimina flatter than EoS minima when more shallow.
(inherently non-quadratic)

1-Step Trajectory (100 Iterations)
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Width and Depth: for EoS

* The difference between (1-xA2yA2)A2 (left) and (1-xy)"2 (right)
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EoS occurs at reasonable step size-1

P train loss sharpness sharpness (by time)
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Figure 5: After the sharpness reaches 2/7, gradient descent enters the Edge of Stability. A
network is trained with gradient descent at a range of step sizes (see legend), using both MSE loss
(top row) and cross-entropy (bottom row). Left: the train loss curves, with a vertical dotted line at
the iteration where the sharpness first crosses 2/7. Center: the sharpness, with a horizontal dashed
line at the value 2/7). Right: sharpness plotted by time (= iteration x 7) rather than iteration.



EoS occurs at reasonable step size-2
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Figure 90: We train a VGG with BN to completion using gradient descent at different step sizes
(see legend in the top right pane). Top left: we plot the train loss, with a vertical dotted line
marking the iteration where the sharpness first crosses 2/ 1. Top center: we plot the evolution of
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Implications

* Rethinking L-smoothness assumption

* Following the optimization trajectory, the L-smoothness condition
gradually breaks.

 The non-monotonical loss decrease indicates the descent lemma”
does not hold, contradictory with L-smoothness

* |t (always) can be applied locally

* Only continuous time analysis (e.g. gradient flow) is not enough

 Gradient flow will not perceive the 2/n threshold
* The progressive sharpening continues

* The E0S is inherently non-quadratic
=> Technical difficulties for these inter-related phenomena !!
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Theory of E0S*

* Normalized GD
* A Minimalist Example
e Self-stabilization



Normalized GD

» Consider
Normalized GD with LR 7 by z,,(¢), with 2,,(0) = i, for all n:

VL(z,(t))
|VL(zy(t))l

Normalized GD: =z,(t+1) = z,(t) — nl

 The algorithm even cannot converge for the quadratics



Normalized GD: Two phase

* Phase | (Convergence/Preparation) (Fig for quadratics)
* monotonical loss decrease till unstable

* Phase Il (Alignment/Limit flow)
 with top eigenvectors

Invariant sets Lo [{v1, X(1))]
« sharpness reduction ) I, . R
I
1. . /,nI; 102+
§ 0 10**4.
] 10-¢] |
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Normalized GD: Two phase

Cons
* close to the manifold of global minimizers

* unfixed step size

) nOiSG injeCted Gradient Flow
* tracking gradient flow? K AA%M (r;:)':p;;e— |2|)

GD, phase | “
T, =0(n™") Limiting

“Flow

[': manifold of zero-loss solution

Figure 3: Illustration for two-phase dynamics of Normalized GD and GD on v/L on a 1D zero loss manifold I'. For
sufficiently small LR 7, Phase I is close to Gradient Flow and lasts for ©(n ') steps, while Phase II is close to the
limiting flow which decreases the sharpness of the loss and lasts for ©(7~2) steps. GD iterate oscillates along the top
eigenvector of the Hessian with the period equal to two steps. (cf. Figure 2 in [Li et al., 2022b])



A Minimalist Example

We focus on the simple objective £(z,y, z,w) = 5(1 — zyzw)?. Let the learnable parameters
x,y, z,w € R to be trained using gradient descent with a fixed step size n € R™ that

(Tet1, Yer1, 2641, Wer1) = (Tey Yt, 2¢, W) — NV L(T4, Y, 2¢, W) (1)
Here x; denotes the value of parameter x after the ¢-th update. To further simplify the problem, we
consider the symmetric initialization of 2y = zg, wg = yo. Note that due to symmetry of objective,
the i1dentical entries will remain identical throughout the training process, so the training dynamics
reduces to two dimensional and the 1-step update of z and y follows

Ti41 = Tt — -’13ty£?77($?y$ —1), Yt+1 =Yt — m?ytﬂ(mfyf =l (2)
It’s easy to show that the set of global minima for this function form the hyperbola xy = 1. Without



A Minimalist Example @ 2 ((=*

1-Step Trajectory (1000 Iterations)
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A Minimalist Example

Projected Trajectory (Iteration 0 - 18500) Projected Trajectory (Iteration 5000 - 18500)
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Figure 7: Training trajectory of S-layer ELU-activated FC Network. We train the model using
with 7 = 0.01 for 18500 iterations. The sharpness converges to 199.97 while 2/n = 200. The local
trajectory (right) can be very well approximated by the parabola z = 7500y2.



A Minimalist Example

Cons

* No stable sharpening phase, (locally or intrinsically)
 Only for single simple example



Self-stabilization: sketch
On the unstable direction, we have
*VLO+au)=VLO)+aV(VLO)Tu)+0.5a2V(uTV2L(O)u)

where u is the top eigenvector

On the rest stable direction, the loss does decrease



Limitations

* Normalized GD

* Not the true algorithm
* Inject some noise the analysis

* A Minimalist Example
 Analysis for a single degree-4 model

 Self-stabilization
* The assumptions may not hold(from openreivew)



My understanding

* Locally

* Decomposition
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EoS variant for SGD
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SGD is more picky

fi(z) = min{z?,0.1(z — 1)}, f2(z) = min{z?,1.9(z — 1)?}.
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Figure 2: Motivating example. (Left) One trajectory of SGD with learning rate n = 0.7,z9 =
1 — 10—°, showing convergence to 0. GD with the same learning rate will converge to 1. (Right) The

value of objective function, showing a burst during the escape.



Summary & Future

EoS
- What? When? Why?

Future
- How to give an accurate characterization for SGD

- How EoS helps us in practice

- Adapt the step size

- Find the minima with lower sharpness (for possible better
generalization)



Thanks



